
Monero multi-signature patch review

20220627 – FINAL

Monero multi-signature patch review 20220627 – FINAL

Contents

1 Summary 4

2 Project overview 4
2.1 Scope . 4
2.2 Goals . 4

3 Vulnerability assessment 5
3.1 Drijvers attack . 5

3.1.1 Impact . 5
3.1.2 Patch . 6
3.1.3 Assessment . 6

3.2 Nonce reuse . 7
3.2.1 Impact . 7
3.2.2 Patch . 7
3.2.3 Assessment . 7

3.3 Insufficient transaction validation . 8
3.3.1 Impact . 8
3.3.2 Patch . 8
3.3.3 Assessment . 8

3.4 Burning bug . 9
3.4.1 Impact . 9
3.4.2 Assessment . 9

4 Security issues 11
4.1 S-MSG-001: Hash-to-scalar modulo bias . 11

4.1.1 Description . 11
4.1.2 Recommendation . 12

4.2 S-MSG-002: Lack of domain separation in lists hashing 12
4.2.1 Description . 12
4.2.2 Recommendation . 13

4.3 S-MSG-003: Uncaught exceptions in clsag_context . 13
4.3.1 Description . 14
4.3.2 Recommendation . 14

4.4 S-MSG-004: Unchecked D value in transaction reconstruction 14
4.4.1 Description . 15
4.4.2 Recommendation . 15

2

Monero multi-signature patch review 20220627 – FINAL

4.5 S-MSG-005: Unchecked s value in transaction reconstruction 15
4.5.1 Description . 15
4.5.2 Recommendation . 16

4.6 S-MSG-006: Integer overflow in transaction fee computation 16
4.6.1 Description . 16
4.6.2 Recommendation . 17

4.7 S-MSG-007: Integer overflow in export_multisig() 17
4.7.1 Description . 17
4.7.2 Recommendation . 17

5 Observations 18
5.1 O-MSG-01: Inconsistent hash-to-curve validity checks 18
5.2 O-MSG-02: Redundant point marshalling . 18
5.3 O-MSG-03: Single multisig threshold allowed . 18
5.4 O-MSG-04: Concurrent multisigs impossible . 18

6 Disclaimer 19

3

Monero multi-signature patch review 20220627 – FINAL

1 Summary

RINO solicited Inference to review changes to the multisignature system of the Monero cryptocurrency.
These changes were combined into a pull request which sought mainly to address 3 vulnerabilities,
two of which had been reported anonymously. We reviewed the changes in the patch with a particular
focus on assessing how these vulnerabilities were addressed.

This report presents the work performed, and notably describes:

• The 3 vulnerabilities the patch sought to fix—plus one it did not—along with an assessment of
the extent to which the issues have been addressed.

• 7 potential security issues,
• 4 observations related to defense-in-depth, reliability, and performance.

We would like to thank RINO for trusting us.

2 Project overview

2.1 Scope

The client requested a review of this patch to the multisig system, in pull request #8149. The code was
reviewed at commit f5e33479d656bc95001d2f135651e9fe9194681a.

We reviewed the changes introduced by this patch, which affected the following files:

• src/cryptonote_config.h
• src/cryptonote_core/cryptonote_tx_utils.{h, cpp}
• src/multisig/multisig_clsag_context.{h, cpp}
• src/multisig/multisig_tx_builder_ringct.{h, cpp}
• src/ringct/rct.{h, cpp}
• src/wallet/wallet2.{h, cpp}

We also assessed the three vulnerabilities the patch sought to address, looking at their security impact,
and the extent to which they have been adequately addressed by the changes in the patch.

2.2 Goals

Patch #8149 attempts to fix three vulnerabilities related to Monero’s multisig system. Two of these
were reported anonymously through a bug bounty platform, in the form of a patch providing proof of
concept attacks.

4

https://github.com/monero-project/monero/pull/8149
https://github.com/monero-project/monero/pull/8149
https://github.com/monero-project/monero/pull/8149/commits/f5e33479d656bc95001d2f135651e9fe9194681a
https://github.com/monero-project/monero/pull/8149

Monero multi-signature patch review 20220627 – FINAL

The threat model we use is the standard one, where the attacker controls a subset of the parties holding
a collective multisignature wallet. The attacker controls an insufficient number of parties in order to
sign transactions without the consent of other participants. The main security goals in this model are
to prevent unauthorized transactions from being signed, while also allowing honest participants to
continue signing transactions.

3 Vulnerability assessment

3.1 Drijvers attack

This attack was a general attack on two-round multisignature schemes based on Schnorr signatures,
from a 2018 paper by Drijvers et al. This includes the CLSAG scheme that Monero uses. The attack
allows an attacker to forge a signature on a message of their choice, by initiating multiple signing
sessions in parallel.

The idea is that in a simple multisignature scheme, each participant computes a random αi ∈R Zq, and
then broadcasts Ai := αi · G to the other participants, where G is a group generator. The participants
then compute A :=

∑
i Ai, to create a commitment to their joint nonce

∑
i αi.

The issue stems from the fact that by going last, a malicious participant can choose their nonce αi as a
function of the commitments Aj that it has already seen, and thus gain a significant influence over the
final result.

The general process for attacks based on Drijvers is as follows:

1. The attacker waits until the other participants have sent their Aj
i commitments, for each parallel

signing session.
2. The attacker defines their αj

k values based on the commitments from the other participants,
across all sessions, and on the message they’re computing a forgery over.

3. The attacker waits to receive all of the signatures in each session, and then uses them to forge a
signature over their message.

Crucially, step 2 depends on the fact that the Aj
i commitments are fixed even if αj

k changes.

3.1.1 Impact

The result of this attack is that if enough concurrent signing sessions are initiated, it’s possible to forge
a signature for a different message.

Using the advanced attack from On the (in)security of ROS, a signature could be efficiently forged
using 256 concurrent multisig sessions. Using fewer sessions would still allow forgery, although would

5

https://eprint.iacr.org/2018/417
https://eprint.iacr.org/2020/945

Monero multi-signature patch review 20220627 – FINAL

require significantly more effort. Using 256 sessions works perfectly because scalars for Curve25519
can be represented with 256 bits.

It also seems that the attack could plausibly be deployed. Because of the asynchronous nature of the
multisig system, it’s possible for several multisig attempts on different messages to exist at the same
time. If an attacker controlled two participants in the consortium, they could initiate many legitimate
transactions with one participant, and then use the other to carry out the attack, forging a signature
on a message of their choice without the consent of the other participants.

Because of these factors, the impact of this attack is high.

3.1.2 Patch

This patch sought to address this issue by applying the fix used in MuSig2, a multisignature scheme for
Schnorr signatures.

The idea is that instead of each participant having a single nonce αi, the participants have several
nonces α1

i , . . . , αm
i , along with corresponding commitments Aj

i := αj
i · G. Rather than simply calcu-

lating A :=
∑

i,j Aj
i , the participants first calculate an accumulation factor b := H({Aj

i }), by hashing
all of the commitments, and then calculate:

A :=
∑

i

∑
j

bjAj
i

This approach effectively mitigates the Drijvers attack, by making the contribution of each participant
depend on the contribution of all participants, via the factor b.

3.1.3 Assessment

We checked that the patch implemented this approach correctly. In effect, the patch uses two nonces
for each participant, which is sufficient. (We note that the patch technically allows a dynamic number
of nonces for each participants in many parts of the code, but then hardcodes the number to 2). The
patch also uses domain separation for the hash calculating b, and also includes as much contextual
information about the transaction as possible, mitigating potential attacks similar to the Frozen Heart
class of vulnerabilities, which rely on insufficient information being included in the hash. Not including
this information in the hash might also enable Drijvers attacks which would work by varying the
contextual information rather than the nonces.

Because of this, we assess this vulnerability to have been adequately addressed.

6

https://eprint.iacr.org/2020/1261
https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/
https://blog.trailofbits.com/2022/04/18/the-frozen-heart-vulnerability-in-plonk/

Monero multi-signature patch review 20220627 – FINAL

3.2 Nonce reuse

This was the first of two issues reported anonymously.

The multisig system in Monero has an initial phase in which nonces k ∈R Fq are generated, and then
commitments K := k · G are sent to other participants. This phase can be performed multiple times,
preparing nonces for many signatures in advance. When a message arrives that a participant would
like to sign, they create a transaction, which includes information instructing other participants on
which nonces to use: by including a nonce commitment K instead the transaction, they indicate that
the corresponding nonce k needs to be used. A participant can then use this public K value to look up
the corresponding k scalar, using a map of nonces that they had prepared before.

The issue stemmed from the fact that the transaction wasn’t validated to not instruct participants
to use a nonce multiple times, and so a malicious transaction prepare could effectively make other
participants reuse nonces, and thus recover private keys.

3.2.1 Impact

Applications making use of the multisig system need to do extra validation to make sure that the
transaction is something they want to sign. It’s possible that this validation would have also checked
that these nonce commitments weren’t duplicated, but this seems unlikely.

If successfully exploited, this vulnerabity would allow the recovery of private keys corresponding to
transaction outputs, and thus unauthorized spending of funds.

Because of these factors, the impact of this attack is high.

3.2.2 Patch

The patch works by always erasing the memory inside of this map of nonces anytime a nonce is
retrieved, replacing that nonce with 0. Furthermore, nonces returned are checked to not be 0, and an
error is returned instead, to prevent continuing the signing process with a 0 nonce.

3.2.3 Assessment

This change prevents any duplication from causing nonce reuse, by preventing reuse at the lowest
level of the nonce system, rather than validating the transaction for reuse.

We assess this vulnerability to have been adequately addressed.

7

Monero multi-signature patch review 20220627 – FINAL

3.3 Insufficient transaction validation

This was the second of two issues reported anonymously.

The multisig system works in several phases as mentioned previously. Using the notation in Zero
to Monero, Section 3.6, in the final phase, the initiator of the transaction has aggregated the nonce
commitments, and calculated the values c1, . . . , cn and r1, . . . , rn, with the exception of rπ. All that’s
left is to calculate:

rπ :=
∑

i

αi − cπwπ,i

using the contributions from each participant. This is done in a round-robin fashion, with each partici-
pant contributing an additional term in this sum, and then forwarding the transaction further.

The issue was that the cπ value wasn’t validated at all, and participants would blindly calculate αi −
cπwπ,i without any regard as to whether or not this was actually related to the transaction presented
to them.

3.3.1 Impact

The impact of this issue is complicated, and difficult to disentangle from the fact that transactions in
general may not be sufficiently validated at the application layer.

In particular, you could choose cπ originating from a different transaction, and thus get the participants
to authorize an action different from the one described and validated at the application level.

Because of these factors, the impact of this attack is high.

3.3.2 Patch

The patch works by completely rewriting the transaction building system.

The goal of this rewrite is to recompute more components of the transaction from the application level
details, like which outputs are being spent. In effect, the new system tries to independently recompute
the details of the transaction, rather than trusting the values inside of the transaction as presented.

3.3.3 Assessment

We audited this new system, and had several findings and observations presented further in this
report.

8

https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

Monero multi-signature patch review 20220627 – FINAL

In regards to this particular vulnerability, we assess it to have been addressed by this patch.

While the direct issue of smuggling an unrelated cπ value has been patched, the larger issue of insuffi-
cient application validation of transactions still remains. Looking at the RPC functionality, it’s of utmost
importance that applications validate transactions themselves, before invoking the RPCs. Applications
need to validate that the transactions correspond to actions that they actually want to take, and don’t
have adverse side effects like spending the wrong funds.

3.4 Burning bug

Monero’s 2018 burning bug is another issue brought to our attention during the audit. In essence, the
issue is that the output of a transaction may be a stealth address that has been repeated, or even
already spent. This has the effect of burning funds, since an output can only be spent once, so the
repeated outputs are rendered unusable.

While this issue had been fixed for standard wallets, concerns were raised about whether or not it
might be present in multisig wallets. Patch #8149 initially contained a proposed fix for this issue, which
was subsequently removed from the commits, for unclear reasons.

The burning bug was fixed through additional checks inside of wallets, but it is only one instance of
a more general class of risks. For example, a similar issue remains in the context of multisignatures,
where a malicious participant can initiate a multisignature using duplicate or repeated outputs. If the
other participants sign this transaction, completing the signature, then it would burn the funds held
collectively.

3.4.1 Impact

The impact of the burning bug, if not mitigated at the application layer, would allow a single participant
in a multisig wallet to unilaterally burn funds held collectively by the group of participants in the
wallet.

The impact is thus also high.

3.4.2 Assessment

As previously mentioned, the patch no longer contains a fix for the burning bug, so the code under
review does not include any more controls to prevent its exploitation.

To understand how to best mitigate such an issue, note that creating a multisignature makes use of
two essential layers:

9

https://web.getmonero.org/2018/09/25/a-post-mortum-of-the-burning-bug.html
https://github.com/monero-project/monero/pull/8149

Monero multi-signature patch review 20220627 – FINAL

• The first, upper layer involves creating the content of a transaction, or agreeing to it. This content
specifies what effect the transaction is supposed to have, and applications approve the transac-
tions based on whether or not they want this effect to happen. For example, a transaction might
describe sending coins owned by the multisig group to another address, and applications would
have to decide if this transaction should be approved.

• The second, lower layer involves collectively creating a signature over this transaction, and is
where the multisig system itself is used. The end result should be a valid signature for that
transaction, produced with the cooperation of several participants. Crucially, this layer should
not be able to produce a signature for a different transaction than the one approved by the layer
above it. Values derived from the high-level values of the transaction, like the description of
what coins are being spent, may be independently checked for integrity, since those high-level
values are what applications have validated.

That is, the lower-level code should not necessarily trust its callers at the application level: it should
not assume any pre-condition on the input values, except for those that it cannot verify.

The previous vulnerability discussed, “Insufficient transaction validation”, stemmed from the fact that
the multisig system didn’t check the correctness of intermediate values derived from the high-level
values in the transaction. This would mean that even if an application approved a transaction, in
the first layer, the second layer, involving the multisig system, could be tampered with to change the
transaction being signed.

The burning bug, on the other hand, is an issue in the first layer. The root cause is applications not
validating that a transaction does not contain these malicious repeated outputs. It is possible to
mitigate the issue by moving more responsibilities from the first layer to the second, and thus reducing
which parts of a transaction the first layer approves. For example, some proposals modify the way
outputs are created in a multisig context, in order to have multiple participants collaborate in their
creation, rather than being proposed by a single participant.

Unfortunately, this kind of shifting of responsibility will never be complete; there will always be aspects
of transactions which cannot be verified by the multisig system itself. For example, a transaction
could describe the transfer of funds to a perfectly legitimate address. In this case, the multisig system
has no way of knowing whether or not the applications making use of it want the transfer to happen.
This transfer has the same appearance regardless of whether or not the participants would like it to
happen.

We stress that while some vulnerabilities in the application layer could be mitigated by shifting more
responsibility to the multisig system, it will always be necessary for applications to validate that the
transactions they’re signing perform the right actions. Having a clear delineation of responsibilities
betwen the application layer and the multisig layer also facilitates their security analysis.

10

https://github.com/monero-project/research-lab/issues/103

Monero multi-signature patch review 20220627 – FINAL

Ultimately, such issues are best avoided by clearly defining and documenting the system’s security
model: shared responsibilites, pre- and post-conditions, redundant controls, and last but not least
properly testing such controls.

4 Security issues

Severities are quantified with two dimensions, roughly defined as follows:

• Exploitability:

– Low: Other vulnerabilities are needed to exploit the bug.
– Medium: Privileged access is needed (for example, local), or costly attack (in terms of

computation, storage, bandwidth, etc.)
– High: Exploitation is easy (for example, remote, unauthenticated)

• Impact

– Low: The vulnerability exploit has clearly little to no impact on the system, its users, and
operators.

– Medium: Not low, but not high.
– High: Critical system assets are clearly impacted, in terms of confidentiality, integrity,

availability, or value.

Note that these definitions are vague on purpose, as they depend on the business context and assets
at stake. For example, if service availability is critical to the system, then a DoS can qualify as high-
impact.

4.1 S-MSG-001: Hash-to-scalar modulo bias

Exploitability: low

Impact: low

4.1.1 Description

In src/ringct/rctOps.cpp the function hash_to_scalar()works by using a hash function, view-
ing the 32-byte output as an unsigned integer, and then reducing this output modulo the order of the
group:

11

Monero multi-signature patch review 20220627 – FINAL

1 void hash_to_scalar(key &hash, const void * data, const std::size_t l)
{

2 cn_fast_hash(hash, data, l);
3 sc_reduce32(hash.bytes);
4 }

Because the order of the Curve25519 group, close (and less than) 2256, is not a power of 2, this reduction
introduces a small modulo bias in the output, making hashes have a non-uniform distribution.

Exploitability: This function is used many times throughout the construction of multisig transactions,
with data either controlled or influenced by other participants in the protocol.

Impact: The modulo bias is negligible, and the slightly non-uniform distribution will not affect the
security of the protocol.

4.1.2 Recommendation

Adding an extra 128 bits of output to the hash would ensure that the bias is ≤ 2−128. This would bring
the output of the hash to 384 bits. Alternatively, a 512 bit hash could be used, as is done in the Ed25519
signature scheme. It’s possible that code to do this reduction could be reused in this context.

The post The definitive guide to “modulo bias and how to avoid it”! is a good reference to mitigate this
class of issues.

4.2 S-MSG-002: Lack of domain separation in lists hashing

Exploitability: medium

Impact: low

4.2.1 Description

in src/multisig/multisig_clsag_context.cpp, many hash functions take in variable-length
lists of elements, but don’t include any information about their length, or any kind of domain separa-
tion.

For example, consider the b_params values, which are hashed by concatenation:

1 // musig2-style nonce combination factor components for multisig
signing

2 // b = H(domain-separator, {P}, {C}, C_offset, message, {
L_combined_alphas}, {R_combined_alphas}, I, D, {s_non_l}, l)

3 // - {P} = ring of one-time addresses

12

https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

Monero multi-signature patch review 20220627 – FINAL

4 // - {C} = ring of amount commitments (1:1 with one-time addresses)
5 // - C_offset = pseudo-output commitment to offset all amount

commitments with
6 // - message = message the CLSAG will sign
7 // - {L_combined_alphas} = set of summed-together public nonces from

all multisig signers for this CLSAG's L component
8 // - {R_combined_alphas} = set of summed-together public nonces from

all multisig signers for this CLSAG's R component
9 // - I = key image for one-time address at {P}[l]

10 // - D = auxiliary key image for the offsetted amount commitment '{C
}[l] - C_offset'

11 // - {s_non_l} = fake responses for this proof
12 // - l = real signing index in {P} and '{C} - C_offset'
13 rct::keyV b_params;

Here P, C, L_combined_alphas, and R_combined_alphas are all variable length lists. Because the
list of these lists is not included inside the hash, or is there any kind of separator between the lists, it’s
possible to have distinct inputs create a collision, by interpreting the size of the lists differently.

This issue also applies to c_params, mu_C_params and mu_P_params in the same file.

Exploitability: It’s easy to find example inputs which cause this issue, but validation of the transaction
at the application level may already be able to filter these out. There’s no clear attack vector as a
result.

Impact: If colliding inputs could be found, a first set of (secure) parameters could be replaced with
(potentially insecure) parameters, or the other way, leading to an insecure state.

4.2.2 Recommendation

The simplest way to avoid this issue is to include the length of each variable length list before that list,
inside of the hash. It might be possible that applications already depend on the current format of the
hash, such as for c_params which is part of the signature scheme. For b_params, since this is just
used internally for nonce aggregation in the multisig, the hash method can safely be changed.

4.3 S-MSG-003: Uncaught exceptions in clsag_context

Exploitability: high

Impact: low

13

Monero multi-signature patch review 20220627 – FINAL

4.3.1 Description

In src/multisig/multisig_clsag_context.cpp, the functions in this file call out to other meth-
ods which throw exceptions on invalid input, but these exceptions aren’t caught inside of the functions.
This means that instead of return false on invalid inputs, sometimes these functions may throw an
exception instead. Because the surrounding RPC wallet does catch exceptions, this won’t cause a full
crash, but could still slow down the server.

For example, the function precomp in src/ringct/rctOps.cpp is called several times:

1 //Does some precomputation to make addKeys3 more efficient
2 // input B a curve point and output a ge_dsmp which has precomputation

applied
3 void precomp(ge_dsmp rv, const key & B) {
4 ge_p3 B2;
5 CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&B2, B.bytes) ==

0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::
string>(__LINE__));

6 ge_dsm_precomp(rv, &B2);
7 }

This is used, among other places, in multisig_clsag_context.cpp:145

1 rct::precomp(D_precomp.k, D);

Exploitability: Combined with S-MSG-004, it’s possible to consistently trigger the above code path,
by choosing a malicious D as the initial signer.

Impact: Because the wallet still checks exceptions at the RPC layer, this prevents a node from crashing.
If this multisig code is used in a different context, it’s possible that these exceptions may not be thought
of, since the code already returns a boolean to indicate failures.

4.3.2 Recommendation

To have a consistent interface, it would be better to have the functions in multisig_clsag_context
catch these exceptions, and return false, in order to have a single mechanism to signal failure.

4.4 S-MSG-004: Unchecked D value in transaction reconstruction

Exploitability: high

Impact: low

14

Monero multi-signature patch review 20220627 – FINAL

4.4.1 Description

In src/multisig/multisig_tx_builder_ringct.cpp, the function set_tx_rct_signatures
() does not check that the D value is of the correct format, when reconstructing the signature, at line
670:

1 else {
2 rv.p.CLSAGs[i].D = unsigned_tx.rct_signatures.p.CLSAGs[i].D;
3 rv.p.CLSAGs[i].I = I;
4 D = rct::scalarmultKey(rv.p.CLSAGs[i].D, rct::EIGHT);
5 }

This value is pulled directly from unsigned_tx, which is passed on from another participant in the
multisig. No validation is done on this value.

Exploitability: Any participant can directly trigger this by modifying their D value in the transaction
they pass along to other participants.

Impact: Aside from S-MSG-003, there doesn’t seem to be any impact, beyond causing the multisigna-
ture to fail.

4.4.2 Recommendation

The code should verify that D was constructed as expected, by performing checks similar to the code in
the not reconstruction branch.

4.5 S-MSG-005: Unchecked s value in transaction reconstruction

Exploitability: low

Impact: low

4.5.1 Description

In src/multisig/multisig_tx_builder_ringct.cpp, the function set_tx_rct_signatures
() does not check the s values when reconstructing the signature, beyond verifying their length, at
line 644:

1 else {
2 if (ring_size != unsigned_tx.rct_signatures.p.CLSAGs[i].s.size())
3 return false;
4 s = unsigned_tx.rct_signatures.p.CLSAGs[i].s;
5 }

15

Monero multi-signature patch review 20220627 – FINAL

This value is pulled directly from unsigned_tx, which is passed on from another participant in the
multisig. No validation is done on this value.

Exploitability: Any participant can directly trigger this by modifying their s value in the transaction
they pass along.

Impact: The only impact beyond that of the protocol is equivalent to revealing the secret index in the
ring signature, which a malicious participant can already do.

4.5.2 Recommendation

The code here can’t check that the values were generated randomly, as expected, beyond checking
for trivial values like 0. On the other hand, the protocol could be amended so that each participant in
the multisig contributes to these s values, so that the result is random so long as at least one signer is
honest.

4.6 S-MSG-006: Integer overflow in transaction fee computation

Exploitability: low

Impact: low

4.6.1 Description

In src/multisig/multisig_tx_builder_ringct.cpp, the function compute_tx_fee() could
trigger an integer overflow if enough inputs or outputs with large values are spent:

1 static bool compute_tx_fee(
2 const std::vector<cryptonote::tx_source_entry>& sources,
3 const std::vector<cryptonote::tx_destination_entry>& destinations,
4 std::uint64_t& fee
5)
6 {
7 std::uint64_t in_amount = 0;
8 for (const auto& src: sources)
9 in_amount += src.amount;

10
11 std::uint64_t out_amount = 0;
12 for (const auto& dst: destinations)
13 out_amount += dst.amount;
14
15 if(out_amount > in_amount)
16 return false;
17 fee = in_amount - out_amount;

16

Monero multi-signature patch review 20220627 – FINAL

18 return true;
19 }

Exploitability: Provided that the transaction is verified by the application, the inputs would have to
actually exist, and so would require a genuinely large amount of currency to be exploited.

Impact: The fee would be miscalculated, but wouldn’t have any further impact.

4.6.2 Recommendation

Checking for overflow here in both of these sums would avoid these issues.

4.7 S-MSG-007: Integer overflow in export_multisig()

Exploitability: medium

Impact: low

4.7.1 Description

in src/wallet/wallet2.cpp the function export_multisig() calculates the number of transac-
tions which need to be created using tools::combinations_count, which can trigger an integer
overflow if enough signers are involved

At line 13440:

1 size_t nlr = tools::combinations_count(m_multisig_signers.size() -
m_multisig_threshold, m_multisig_signers.size() - 1);

In particular, if m_multisig_signers.size()= 70 = 2 * m_multisig_threshold, this will
overflow the 64-bit size_t type.

Exploitability: The exploitability is mitigated by the fact that the number of participants in a multisig
may be checked elsewhere.

Impact: The impact would be an insufficient number of transaction attempts, although the perfor-
mance of the system would have already degraded significantly by the time this count has reached the
maximum value for size_t.

4.7.2 Recommendation

Checking for overflow would be a possibility here, although other safeguards for creating large mul-
tisignature wallets might already be sufficient.

17

Monero multi-signature patch review 20220627 – FINAL

Ideally, avoiding the need to create one transaction for each possible combination of signers would
allow the system to scale to larger consortiums.

5 Observations

Here we list observations and suggestions not directly about security risks, but potential improvements,
“defense-in-depth”, quality assurance, and performance.

5.1 O-MSG-01: Inconsistent hash-to-curve validity checks

In src/ringct/rctOps.cpp, the function hash_to_p3() attempts to convert the output of a hash
function into a point on the curve. The method ge_fromfe_frombytes_vartime() it calls to do
this doesn’t fail, but instead has several asserts that detect invalid points. This is in contrast with
other functions in rctOps.cpp, which instead throw exceptions or return booleans. The probability of
triggering this behavior is negligeable, because the output of the hash function is effectively random.
Nonetheless, it might be useful to unify the behavior of the functions in this file, for consistency.

5.2 O-MSG-02: Redundant point marshalling

In src/multisig/multisig_clsag_context.cpp:151, the loop involves calling rct::precomp
() in order to unmarshall points from the compressed form, and perform some precomputation for
faster scalar multiplications. The loop also involves functions like rct::subKeys which internally
unmarshall points, before marshalling back. This means that some points are unmarshalled several
time, which isn’t ideal.

5.3 O-MSG-03: Single multisig threshold allowed

In src/wallet/wallet2.cpp:9142, multisigs with a threshold of 1 are allowed, which seems odd.
These are effectively the same as sharing keys.

5.4 O-MSG-04: Concurrent multisigs impossible

As warned by the comment at src/wallet/wallet2.cpp:9103, concurrent multisig attempts using
overlapping inputs will not work, because the same nonces may be used. This is more so a defi-
ciency with the current round-robin protocol, rather than something involving explicit consensus from
participants.

18

Monero multi-signature patch review 20220627 – FINAL

6 Disclaimer

This security assessment report (“Report”) by Inference AG (“Inference”) is solely intended for RINO
(“Client”) with respect to the Report’s purpose as agreed by the Client. The Report may not be relied
upon by any other party than the Client and may only be distributed to a third party or published
with the Client’s consent. If the Report is published or distributed by the Client or Inference (with the
Client’s approval) then it is for information purposes only and Inference does not accept or assume
any responsibility or liability for any other purpose or to any other party.

Security assessments of a software or technology cannot uncover all existing vulnerabilities. Even an
assessment in which no weaknesses are found is not a guarantee of a secure system. Generally, code
assessments enable the discovery of vulnerabilities that were overlooked during development and
show areas where additional security measures are necessary. Within the Client’s defined time frame
and engagement, Inference has performed an assessment in order to discover as many vulnerabilities
of the technology or software analyzed as possible. The focus of the Report’s security assessment was
limited to the general items and code parts defined by the Client. The assessment shall reduce risks for
the Client but in no way claims any guarantee of security or functionality of the technology or software
that Inference agreed to assess. As a result, the Report does not provide any warranty or guarantee
regarding the defect-free or vulnerability-free nature of the technology or software analyzed.

In addition, the Report only addresses the issues of the system and software at the time the Report was
produced. The Client should be aware that blockchain technology and cryptographic assets present a
high level of ongoing risk. Given the fact that inherent limitations, errors or failures in any software
development process and software product exist, it is possible that even major failures or malfunctions
remain undetected by the Report. Inference did not assess the underlying third party infrastructure
which adds further risks. Inference relied on the correct performance and execution of the included
third party technology itself.

19

	Summary
	Project overview
	Scope
	Goals

	Vulnerability assessment
	Drijvers attack
	Impact
	Patch
	Assessment

	Nonce reuse
	Impact
	Patch
	Assessment

	Insufficient transaction validation
	Impact
	Patch
	Assessment

	Burning bug
	Impact
	Assessment

	Security issues
	S-MSG-001: Hash-to-scalar modulo bias
	Description
	Recommendation

	S-MSG-002: Lack of domain separation in lists hashing
	Description
	Recommendation

	S-MSG-003: Uncaught exceptions in clsag_context
	Description
	Recommendation

	S-MSG-004: Unchecked D value in transaction reconstruction
	Description
	Recommendation

	S-MSG-005: Unchecked s value in transaction reconstruction
	Description
	Recommendation

	S-MSG-006: Integer overflow in transaction fee computation
	Description
	Recommendation

	S-MSG-007: Integer overflow in export_multisig()
	Description
	Recommendation

	Observations
	O-MSG-01: Inconsistent hash-to-curve validity checks
	O-MSG-02: Redundant point marshalling
	O-MSG-03: Single multisig threshold allowed
	O-MSG-04: Concurrent multisigs impossible

	Disclaimer

